5. TOC in daily practice As market leader in TOC analysis, Shimadzu connects tradition with experience. This enables users to profit from personal support or by attending seminars and user meetings organized by Shimadzu. These application-oriented meetings serve for the exchange of information and experiences. In this particular field of application notes, specific sets of subjects 'TOC in daily practice' are listed that are not covered by one of the special applications. These are subjects that are related to the TOC parameter, independently of the matrix. The wealth of experience in TOC analysis naturally finds its way into the devel- opment of our TOC systems. Whether online analyzers or laboratory TOC systems – they all impress by their great flexibility, high availability, extreme robustness and stability, simple and intuitive operation and advanced operating and evaluation software. Many additional functions facilitate the user's work and provide more freedom for other important tasks. This chapter also applies to the individual modules, kits or options of Shimadzu's TOC analyzers. Useful functions are also described. Further details are available in the individual application notes (for instance 'TOC determination methods', 'Total nitrogen determination' or 'Blank values'). In addition to the information on 'TOC in daily practice', there are also application notes on 'Pharmaceutical industry', 'Chemical Industry', 'TOC special applications', 'Environmental analysis' and 'TOC process analysis.' Sum parameter – Total Organic Carbon TOC – Determination methods according to EN 1484 **No.** SCA-130-501 The EN 1484 standard "Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)" defines various terms and parameters. #### ■ Definitions according to EN 1484 **TC:** Total carbon – the sum of organically bound and inorganically bound carbon present in water, including elemental carbon. **TIC**: Total inorganic carbon – the sum of carbon present in water, consisting of elemental carbon, carbon monoxide, carbon dioxide (also carbonates and hydrogen carbonates), cyanide, cyanate, and thiocyanate. TOC instruments mainly detect CO₂, originating from hydrogen carbonates and carbonates, just like TIC. **TOC**: Total Organic Carbon – organically bound carbon present in water, bonded to dissolved or suspended matter. Cyanate, thiocyanate and elemental carbon are also determined. **POC**: Purgeable Organic Carbon – the TOC content that is purgeable under the conditions of this method. **NPOC**: Non Purgeable Organic Carbon – the TOC content that is not purgeable under the conditions of this method. The following graph shows how the parameters are linked: #### ■ Determination methods The TOC can be determined according to three different methods: #### ■ Difference method For the difference method, the parameters TC and IC are measured. The TOC is then determined by way of calculation. **TC**: The analysis of the total organic carbon is carried out via oxidation (thermal or wetchemical) and subsequent determination of the resulting carbon dioxide using NDIR detection. **TIC**: Through acidification of the sample using a mineral acid at room temperature and subsequent NDIR detection of the expelled carbon dioxide the inorganic carbon is detected. The TOC is calculated from the difference between TC and TIC: TOC = TC - TIC #### ■ Limitations of the difference method The inorganic carbon content may not be too high in comparison to the TOC. Error propagation can result in a high level of uncertainty for the calculated TOC value. The EN 1484 standard recommends that the TOC value, when using the differential method, should be higher or equal to the TIC value (TOC \geq TIC). #### **Example:** $TC - Value = 100 \text{ mg/l (RSD} = 2\%) \pm 2 \text{ mg/l}$ (98 - 102 mg/l) $IC - Value = 98 \text{ mg/I (RSD= 2\%)} \pm 1,96 \text{ mg/I}$ (96,04 - 99,96 mg/I) $TOC = 2 \text{ mg/l} \pm 3.96 \text{mg/l} (-1.96 - 5.96 \text{ mg/l})$ Due to error propagation, the total error is \pm 3.96 mg/L. According to the difference method, the error of the total result is larger than the calculated TOC content! In the worst case, this can result in a negative TOC value. #### ■ Addition method For the addition method, the parameters POC and NPOC are measured. The TOC is then calculated. **POC**: Degassing of the volatile compounds with subsequent catalytic combustion at 680°C and determination of the resulting carbon dioxide using NDIR detection. **NPOC:** Measurement of the non-purgeable organic compounds, after POC analysis using catalytic combustion at 680°C and subsequent determination of the resulting carbon dioxide using NDIR detection. The TOC is calculated via addition: TOC = POC + NPOC #### ■ Direct method For the direct or NPOC method, it is assumed that the sample does not contain any significant amounts of volatile or purgeable organic compounds. According to this assumption, the TOC is directly determined as NPOC. **NPOC:** Acidification of the sample using a mineral acid (for instance HCL) to a pH < 2, whereby carbonates and hydrogen carbonates are completely converted to carbon dioxide. The carbon dioxide is removed from the sample solution via a sparge gas. Direct NPOC measurement (similar to TC measurement) via oxidation to CO_2 . Subsequent NDIR detection. The TOC corresponds to the NPOC: TOC = NPOC Sum parameter – Total Organic Carbon ### Determination of the purgeable organic carbon (POC) **No.** SCA-130-502 According to EN 1484, which contains the instructions for TOC determination, the POC (purgeable organic carbon) is the TOC content that can be expelled under the conditions of this method. This information is very unspecific and should be described here in more detail. The instruments in the TOC-L series can be extended with an option to include measurement of the POC parameter. The core feature of this option is the LiOH trap, which is placed in the flow line of the analyzer. For POC determination, the sample is aspirated using the TOC-L injection syringe, acidified with HCL and subsequently purged using carrier gas. In this step, CO₂ originating from carbonates and hydrogen carbonates as well as all volatile organic compounds (POC) are purged from the solution. The LiOH trap binds the CO₂ from the gas mixture (originating from the TIC). The volatile compounds pass the trap and reach the catalyst. Here, the volatile organic compounds are converted to CO_2 and detected via NDIR detector. Fig. The addition method (NPOC + POC) During the course of the addition method, the remainder is used for NPOC determination. However, in the drinking water application or ultrapure water application, the POC content is completely negligible. Here, TOC = NPOC The POC can, nevertheless, play an important role in wastewaters, particularly in industrial effluents. #### ■ Calibration Particular attention should be paid to calibration of the POC. Standards that are prepared with volatile, purgeable organic substances are inherently very unstable. This is why IC standard solutions (prepared from carbonates and/or hydrogen carbonates) are used for POC calibration. Sampling of the IC solutions for POC determination is carried out using the TOC-L injection syringe. The IC solution is acidified in the syringe. The inorganic substances of the standard solution are converted to CO₂ and transferred to the NDIR detector using a carrier gas. Fig. POC-Calibration with IC-standard #### ■ System testing In POC analysis, it is of great importance that the LiOH trap functions perfectly. A test should, therefore, be carried out to confirm the efficiency of the CO2 trap. This test should be carried out each working day: An IC control solution (TIC = 1000 mg/L) is prepared and analyzed as a POC sample. For efficient functioning of the LiOH trap, the POC measuring result must be < 0.1 mg/L. #### **■** Example of a POC measurement Sample: Toluene in ultrapure water Toluene is a compound that is fully purgeable. In the addition method, the toluene sample is completely determined as POC. #### **POC** measuring method: Injection volume: 800 µL Purging time: 3 min #### POC-Peak: #### NPOC-Peak: #### Result: TOC=4,05mg/l POC=4,05mg/l => 100% NPOC=0mg/l #### ■ Recommended Analyzer / Configuration TOC-L_{CXX} ASI-L **POC-Option** Sum parameter – Total Organic Carbon TN_b – total bound nitrogen **No.** SCA-130-503 Although nitrogen compounds are essential for nature and the environment, high nitrogen depositions can lead to problems. Nitrogen compounds enter the environment primarily through agricultural processes. Nitrogen-containing fertilizers constitute the largest proportion. But nitrogen compounds can also enter the environment via chemical industrial processes. Excessively high concentrations of nitrogen compounds in the environment can cause eutrophication of water bodies. Eutrophication is the process of uninhibited growth of algae and other organisms due to an excess supply of nutrients. This overgrowth results in a lack of oxygen in the water, which can lead to fish mortality and to the formation of aquatic dead zones. Bound nitrogen occurs in nearly all waters, mostly in the form of ammonia, nitrate, nitrite or organic compounds. #### ■ Total nitrogen TN_b The variety of possible nitrogen compounds necessitated the definition of a sum parameter that represents the total nitrogen compounds. For this purpose, the so-called TN_b (total bound nitrogen) was defined and standardized. The TN_b is the total nitrogen content of a sample in the form of ammonium, nitrite, nitrate, as well as organic compounds. The TN_b does not include dissolved or gaseous nitrogen (N_2). A differentiation between inorganic and organic nitrogen compounds is, by definition, not possible. #### ■ Determination according EN 12260 EN 12260 describes the determination of nitrogen in the form of free ammonia, ammonium, nitrite, nitrate and organic compounds that can be converted under the described oxidative conditions. The conversion of the nitrogen containing compounds takes place via combustion in an oxygen atmosphere higher than 700 $^{\circ}$ C to nitrogen oxide, which reacts with ozone to activated nitrogen dioxide (NO₂*). In the subsequent reaction to NO₂, light quanta are emitted (chemiluminescence) that are measured by the detector. ### ■ Simultaneous TN determination using the TNM-L Based on the similar oxidation process, the TN_b determination can be carried out simultaneously with the TOC measurement. For this application, the TNM-L option is installed on the top of the main TOC-L system. Fig. TOC-L CSH with TNM-L Modul The benefit is that no additional laboratory space is required. For the simultaneous determination, the sample is injected onto the catalyst at 720 $^{\circ}$ C. All carbon atoms present in the sample are converted to CO_2 and, in parallel, the nitrogen atoms to NO. The gas mixture is then transported by the carrier gas stream through the NDIR detector, where the carbon dioxide content is measured. Subsequently, the gas mixture enters the chemiluminescence detector, connected in series, where the nitrogen content is determined (See Figure below). Fig. Simultaneous TOC/TN-Determination It should be noted that an optimal injection volume must be selected for both parameters. #### ■ Recommended Analyzer / Configuration TOC-L _{CXX} with TNM-L ASI-L Sum parameter – Total Organic Carbon #### Kit for high-salt samples No. SCA-130-504 Samples with high-salt loads generally are a problem for TOC analysis. The problem is less the conversion of organic compounds to CO_2 than the effects of the salt on the catalyst. This leads to higher maintenance needs, as the salt can crystallize in the combustion system. In many applications for the instruments in the TOC-L and the TOC-4110/4200 series, the kit for salt-containing samples is an important component. It consists of a combustion tube of a special geometry and a unique mixture of catalyst beads. #### ■ Sample preparation In this application, sample acidification is carried out with sulfuric acid which is used to modify the sample matrix. While NaCl has a melting point of 801 °C, the melting point of Na₂SO₄ is higher (888 °C). The potassium salts of sulfuric acid also have a significantly higher melting point than those of hydrochloric acid. This has a positive effect on the lifetime of the combustion tube. | Compound | Melting point | | |---------------------------------|---------------|--| | NaCl | 801°C | | | KCI | 773°C | | | Na ₂ SO ₄ | 888°C | | | MgCl ₂ | 708°C | | | CaCl ₂ | 782°C | | | K ₂ SO ₄ | 1.069°C | | Tab. Melting point of different salts Results indicate that the stability of the catalyst is increased, and that up to 12 times the number of samples can be measured before the catalyst must be exchanged and the instrument needs servicing. Fig. Catalyst filling #### **■** Endurance test To determine the performance of this option, a brine solution was measured in a long-term test. For this purpose, a 28 % NaCl solution (matrix adapted with a 15 % sulfuric acid solution and spiked to a 5 ppm TOC solution using a KPH solution) was injected 220 times. Initially, a blank value and a control standard with 10 ppm TOC were measured. The control standards were tested after 110 and 220 injections, respectively. The injection volume was 50 μ L. The following figure shows the excellent reproducibilities and the stability of the measurement. Fig. Results of endurance test #### ■ Related application The high-salt kit is used for many different applications in order to keep the maintenance need for difficult matrices as low as possible. #### Examples: - 104 TOC-Determination in seawater - 304 TOC-Determination in brine solution - 306 TOC-Determination in soda solution - 308 TOC-Determination in sodium nitrate - 603 TOC-Determination in chemical industry #### ■ Recommended Analyzer / Configuration TOC-L_{CXX} ASI-L Kit for high-salt samples B-Type Scrubber (At very high halogen concentrations in the matrix, the B-type scrubber is recommended. This scrubber protects the detector cell of the NDIR detector.) Sum parameter - Total Organic Carbon Kit for small sample volumes **No.** SCA-130-505 The instruments of the TOC-L series are designed to successively analyze many different types of samples of different concentrations. For the autosampler, sample trays for different sample numbers and sample volumes are available. To eliminate cross-contamination between analyses of the different samples, the number of rinsing steps can be defined in the software. There is usually enough sample volume available to rinse the tubing and the injection system of the TOC-L several times. Depending on the measuring method, injection volume, measurement range and rinsing steps, 10-20~mL of the sample is needed. #### ■ Small sample volumes It can also occur, however, that only a few mL of sample are available. This is usually the case when there is only little sample available, the sampling process is complex or the sample is very valuable. For such cases, the kit for small sample volumes is available. The 5 mL syringe body can be exchanged for a 500 μL syringe in a rapid conversion step. Moreover, the injection slider has to be exchanged too. #### ■ Specification With this option, automatic dilution, acidification and sparging is not possible and the specifications are, therefore, changed as follows: Measurement range: TC, IC: to 2,000 mg/L TN: to 200 mg/L Injection volume: 150µl maximal Diameter: 0.2 mm NPOC-Measurement: In ASI-L with external Sparge kit ASI-L: 9ml Rack #### ■ Example 5 mL sample is sufficient for NPOC determination using an ASI-L, 9mL vials (3 injections with 150 μL injection volumes) Sum parameter – Total Organic Carbon #### Kit for manual injection **No.** SCA-130-506 The manual injection kit enables the analysis of water samples and gases. The sample for TC determination is directly injected into the combustion chamber using a μL syringe. This is interesting for applications where only a very small sample volume is available. The kit for small sample volumes is a module for TOC analyzers that can be used for automated sample preparation and analysis of small sample amounts. The methods can be optimized in such a way that only a few mL of the sample are required. Optimization should, however, not be at the expense of the intermediate rinsing step. When even smaller amounts than the few milliliters are available, the TOC-L user can fall back on the manual injection kit. For gas samples, a distinction can be made between total carbon (for instance CO or CH_4) and CO_2 . The kit consists of two injection blocks, which can be easily installed in the TOC system. One of the injection blocks is used instead of the IC-port; the other block replaces the TC injection block. This conversion does not take longer than one minute. #### ■ Specification For liquid samples: Measurement range: TC, IC: to 20.000 mg/L Injection volume: 150µl maximal Measurement time: TC, IC: 3 minutes Reproducibility: RSD: 2% (over 8.000mg/L: 3%) For gas samples: Measurement range: 6ppm to 100% CO₂ Injection volume: 20µl bis 10mL Measurement time: 2 – 4 Minuten Reproducibility: RSD: 2% Sum parameter – Total Organic Carbon Calibration with automatic dilution function **No.** SCA-130-507 The core feature of the TOC-L series is the ISP module (Integrated Sample Pretreatment). The ISP module consists of an 8-port valve and a syringe with sparging gas connector. In addition to acidification and sparging in the syringe, the system enables automated dilution. This allows for the wide measuring range, dilutes highly polluted samples and enables the creation of dilution series from a stock solution. The various possibilities offered by the ISP module thus reduce the time expenditure by the user. ### ■ Calibration with automatic dilution function To create calibration curves, the dilution function is activated via the wizard: When filling the data of the calibration points, the concentration of the standard solution (stock) is entered first, followed by the desired calibration curve point. The software calculates the required dilution factor: Since fractional factors are allowed, it is possible to create a 10-point calibration curve with equidistant concentration intervals from one standard solution. The following fgure shows the list of calibration points of a 10-point calibration curve in the range of 1 to 10 mg/L: The measured calibration curve exhibits a linear range with a very good correlation coefficient (r = 0.9995). #### Calibration with automatic dilution function over two decades In addition, there is the possibility to use different standard solutions for the dilution. Calibration was carried out from 1 to 100 mg/L using two standard solutions (10 and 100 mg/L). Also here, the measured calibration curve exhibits a linear range with a very good correlation coefficient (r = 0.9995). Sum parameter – Total Organic Carbon #### Blank value consideration in TOC analysis No. SCA-130-508 Water plays a dual role in TOC trace analysis. On one hand, it is applied as a measuring medium and consumable in the TOC analyzer. It is used to prepare standards and to rinse the instrument. The automatic dilution function of the TOC-L uses ultrapure water for dilution of the samples or the standard solutions for multi-point calibration. On the other hand, ultrapure water is a sample type in TOC analysis. In ultrapure water applications, including the analysis of water for injection and cleaning validation, ultrapure water samples are analyzed to determine their organic impurities. For the determination of low concentrations at the trace-level, knowledge on the blank value is essential. The blank value is usually composed of several components. First, there is the instrument blank, secondly residual concentrations can occur in the solvent and in the reagents used. The influence of the blank value is particularly significant in TOC analysis, as carbon compounds are present everywhere and a widespread carbon input can, therefore, not be prevented. With careful sample preparation and analysis, this blank value can be minimized and reliably determined. The blank value consideration and the analysis of a system blank value is only useful in very low concentration ranges of < 1 mg/L. Purified waters that have been produced using highly complex water treatment systems, have different water grades. The DIN ISO 3696 standard specifies the requirements and test methods for water for analytical use and classifies these waters according to 3 grades. | Parameter | Pure
water
Typ III | Pure
water
Typ II | Ultra
pure
water
Typ I | |-----------------------------------|--------------------------|-------------------------|---------------------------------| | lons, resistance (M Ω .cm) | >0,05 | >1,0 | >18,0 | | lons,
resistance
(μS/cm) | < 20 | <1,0 | <0,055 | | Organix,
TOC (ppb) | <200 | <50 | <10 | | Pyrogene
(EU/ml) | NA | NA | <0,03 | | Particle
>0,2μm
(U/ml) | NA | NA | <1 | | Bacteria
(KBE/ml) | <1000 | <100 | <1 | Tab 1: specification according to DIN ISO 3696 #### ■ Blank value considerations When, for instance, the NPOC is calibrated in the lowest concentration ranges, a positive area value for the zero value of the x-axis generally results, as well as a positive value of the y-axis where it intercepts the x-axis. This positive area value reflects the blank value. This blank value is, however, not attributable to a specific factor or a specific cause but appears as the sum of the various blank value factors. This sum can consist of the following: Total blank value = Σ of - + Blank value of the instrument - + Reagent impurity - + Blank value of the standard (ultrapure water) - + Contaminations from the environment (dust, contaminations on the glassware, etc.) The calibration is evaluated according to the general straight-line equation: $$y = m \cdot x + b$$ y = Peak area x = TOC - concentration m = slope of calibration b = intercept When a blank sample is now measured against this curve, the concentration 0 mg/L is obtained or, if the ultrapure water used is slightly cleaner, even a negative concentration value. Both situations only describe the ratio between the actual blank value and the blank value when the calibration curve has been created. To obtain an absolute concentration value, there is the possibility of zero offset. The zero offset is a parallel offset of the calibration curve through the zero point. Through this offset, the absolute term (b) of the curve is set to zero and the blank value (positive intercept) of the calibration is taken into consideration in the sample analysis. While the concentration in ultrapure water for the preparation of standard includes a blank value, the carbon concentration in an ultrapure water sample only reflects the actual TOC concentration of the sample. In short: dilution water has a blank value, a sample does not have a blank value. #### ■ Instrument blank value Due to the ubiquity of certain compounds, potential minute leaks in the instrument and possibly persistent deposits or biofilms, can lead to area values that originate from the instrument itself and not from the measured sample. To determine this value, the 'blank check' procedure can be performed: For this purpose, the system (TOC-LCPH) carries out an automatic analysis of circulating ultrapure water. The resulting condensation is collected in a suitable container inside the instrument. As soon as enough condensed water is available, the water is circulated, i.e. it is injected again. This procedure is carried out 50 times and it can, therefore, be assumed that the final determined area value corresponds to the actual instrument blank value. Note: The determination of the instrument blank value is also suitable for intensive cleaning of the flow lines and for the 'breaking in' a newly built-in catalyst. As this is a very time consuming method, it should preferentially be carried out overnight. #### ■ Reagents - blank value Reagents, such as hydrochloric acid, often stand unobserved and unintentionally next to the instrument for months and absorb vast amounts of organic carbon from the environment ('from a blank value perspective'). For the determination of such reagent blank values, the standard addition method is suitable. #### **■** Contaminations from the environment At last, the blank value is discussed that can arise from everywhere in the environment and can enter the analysis from various sources. People and their industrial landscapes are the source of a large variety of organic carbon compounds. Humans themselves consist of 18.2 % organic carbon and lose, for example, 1-2 g skin particles per day. These generally settle in the form of house dust. In addition to carbon originating from our own bodies, carbon sources present in cosmetics or toiletries such as soaps, deodorants, perfumes, after-shaves skin creams, ointments, plays an important role. Also the laboratory harbors large sources of organic carbon compounds. Room air contains numerous pollutants that can easily bind to dust particles and can therefore also be present in house dust. Finally, it should not be overlooked that room air contains approximately $0.4 \text{ vol}\% / 0.06 \text{ mass}\% (400 / 600 \text{ ppm}) \text{CO}_2$. Sum Parameter – Total Organic Carbon TOC – Measurement principle Catalytic combustion at 680°C **No.** SCA-130-509 #### **■TOC-Measurement principle** The organic carbon compound is oxidized by combustion to carbon dioxide. The carrier gas (transporting the CO_2) is cooled and dehumidified and passed through a halogen scrubber into the cell of the NDIR (Non Dispersive Infrared) detector where the CO_2 is detected. The NDIR outputs a detection signal which generates a peak. #### ■ Peak detection In the past high temperatures (up to 1000° C) were necessary because the first TOC instruments use the peak height for integration. Due to this the conversion to CO_2 must be instantaneous to keep the peak as narrow and sharp as possible. #### ■ Disadvantage of high temperature The very high combustion temperature has the disadvantage of high levels of maintenance (deactivation of catalyst, corrosion of combustion tube and detector cell) due to the salt melt products. Salt interference at the detection cell from the salt melt products may impact the quality and accuracy of the data. Maintenance time is also increased due to the extended cool down and reheating time required based on the higher combustion temperature. #### ■ Shimadzu TOC method Shimadzu developed the catalytically oxidation at 680°C and uses peak area for integration. This temperature is lower as the melting points of some salts: | Compound | Melting point | |---------------------------------|---------------| | NaCl | 801 °C | | KCI | 773 °C | | Na ₂ SO ₄ | 888 °C | | MgCl ₂ | 782°C | | CaCl ₂ | 782 °C | Tab. Melting points of different salts The deactivation of the catalyst and the corrosion of the combustion tube are minimized. In total the maintenance request is lower as using higher temperature. On the other hand the platinum catalyst ensures a complete oxidation of all organic compounds. #### ■ Recovery rates with 680°C combustion technique | tecnnique | | | | |--------------------------------------|--------------------|--------------------|-----------------| | Compound | Prepared
[mg/L] | Measured
[mg/L] | Recovery
[%] | | Ethanol | 200.0 | 201.2 | 100.6 | | 2-Propanol | 50.0 | 49.8 | 99.6 | | 1-Pentanol | 166.2 | 166.6 | 100.2 | | 1-Hexanol | 172.5 | 173.0 | 100.3 | | Dimethyl-
formamide | 139.5 | 141.5 | 101.4 | | Glucose | 200.0 | 200.4 | 100.2 | | Sucrose | 200.0 | 197.5 | 98,8 | | Sucrose | 50.0 | 49.9 | 99.8 | | Sucrose | 2.000 | 1.968 | 98.4 | | Fructose | 50.0 | 49.9 | 99.8 | | Dodecyl-
benzene
sulfonic acid | 55.0 | 56.0 | 101.8 | | L-glutamic
acid | 50.0 | 50.1 | 100.2 | | Tartaric
acid | 50.0 | 49.8 | 99.6 | | Citric acid | 50.0 | 49.6 | 99.2 | | Tannine | 47.0 | 47.4 | 100.9 | | Lignin | 48.3 | 47.7 | 98.8 | | Albumin | 44.5 | 44.1 | 99.1 | | Humic acid | 44.7 | 45.3 | 101.3 | | Caffeine | 50.0 | 49.5 | 99.0 | | 1,10-
Phenan-
throline | 50.0 | 49.7 | 99.4 | | Catechin | 50.0 | 49.1 | 98.2 | | 1,4-Benzo-
quinone | 100.0 | 100.4 | 100.4 | | Sodium acetate | 100.0 | 98.3 | 98.3 | | Nicotin-
amide | 200.0 | 198.9 | 99,5 | | Nicotin-
amide | 100.0 | 101.3 | 101.3 | | Nicotin-
amide | 2.000 | 1.993 | 99.7 | | Compound | Prepared
[mg/L] | Measured
[mg/L] | Recovery
[%] | |---------------------------------|--------------------|--------------------|-----------------| | Urea | 200.0 | 203.0 | 101.5 | | Urea | 2.000 | 1.986 | 99.3 | | Ethylurea | 100.0 | 102.3 | 102.3 | | Thiourea | 200.0 | 201.8 | 100.9 | | Thiourea | 2.000 | 1.973 | 98.7 | | Nicotinic
acid | 200.0 | 198.5 | 99.3 | | Nicotinic acid | 2.000 | 1.932 | 96.6 | | Sulfanilic
acid | 200.0 | 199.3 | 99.7 | | Sulfanilic
acid | 2.000 | 1.969 | 98.5 | | Sulfosuccin ic acid | 52.7 | 53.0 | 100.6 | | Cyanuric
acid | 10.10 | 10.55 | 104.5 | | Acryl-
amide | 8.36 | 8.61 | 103.0 | | Pyridine
hydro-
chloride | 200.0 | 197.1 | 98.6 | | Pyridine
hydro-
chloride | 2.000 | 1.983 | 99.2 | | Quinine
hydro-
chloric | 200.0 | 202.3 | 100.4 | | Quinine
hydro-
chloric | 2.000 | 2.008 | 100.8 | | Cellulose
(insoluble) | 100.0 | 98.6 | 98.6 | | Poly-
styrene
(insoluble) | 3.00 | 2.99 | 99.7 | Note: The recovery rate is effected by sample preparation, instrument condition and surrounding circumstances! The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to be the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.